# Longitudinal and transverse velocity fields in parsec-scale jets

Florent Mertens, Andrei Lobanov (MPIFR, Bonn)



## 2D structure of jets

- Complex flow:
  - Relativistic
  - Stratified
  - Residual rotation
  - Instability and shocks



## 2D structure of jets

- Complex flow:
  - Relativistic
  - Stratified
  - Residual rotation
  - Instability and shocks
- Current method:
  - Model fitting: 1D
  - Ridge-line analysis
  - Jet transverse profiles



## 2D structure of jets

- Complex flow:
  - Relativistic
  - Stratified
  - Residual rotation
  - Instability and shocks
- Current method:
  - Model fitting: 1D
  - Ridge-line analysis
  - Jet transverse profiles
- Margin of improvement between the information from observation and output
- We need an automatic and robust tool for feature identification



## Talk outline

- Structure analysis (WDS method):
  - Wavelet Decomposition
  - Segmentation
- Kinematic analysis: Multi Scale Cross Correlation (MSCC)
- Analysis of the velocity field of the jets of 3C273 and M87

## Wavelet transform

- Time-frequency transformation
- Representation of signal as a linear combinations of a wave like function which is scaled and translated
- Provides a 2D power distribution over a range of spatial scale in the image
- Robust tool for identification of significant structural patterns (SSP)



#### Feature detection

**DEC** (arcsec

**1. Thresholding:** Statistically significant wavelet coefficients are extracted at each scales.

**2. Detection of features:** Local maxima in the wavelet space are the positions of features

**3. Segmentation:** Watershed segmentation is used to delimit the regions (segments) associated with those positions





### Feature detection



#### MSCC detection of structural changes

- Cross Correlation of each SSP at epoch 1 vs image at epoch 2
   → Weighted Normalized CC
- Separation of features at scale j ~ 2<sup>j</sup>
   → j chosen so that expected Δ < 2<sup>j</sup>
  - $\rightarrow$  CC on a 2<sup>j</sup> x 2<sup>j</sup> window



#### MSCC detection of structural changes

- Cross Correlation of each SSP at epoch 1 vs image at epoch 2
   → Weighted Normalized CC
- Separation of features at scale j ~ 2<sup>j</sup>

   → j chosen so that expected Δ < 2<sup>j</sup>
   → CC on a 2<sup>j</sup> x 2<sup>j</sup> window
- Features inside a same upper scale feature move in average like it:
  - → Define the location of the CC window

Joined analysis at all wavelet scales provide robust match of structural changes up to ~5 beam sizes



#### Testing the WDS and MSCC

**WDS and MSCC has been tested** on simulated image with analytically defined model and:

- Gaussian noise
- Uncertainty on features positions













#### M87



11 VLBA observations between 2007/01/27 and 2007/08/26, at 43 GHz (**1 mas** ~ **0.089 pc**) with **3 weeks** interval





## Summary

- The WDS technique provides reliable reconstruction of the velocity field in transversely resolved flows.
- This can considerably enhance the output of high resolution radio images.
- Result shows **excellent agreement** with global kinematic changes obtained from model-fit analysis of VLBI images.
- Ongoing detailed analysis of M87 velocity field promises interesting results:
  - Results suggest a stratified flow with a fast spine and a slower sheath
  - We detect an acceleration in the sheath

## Thank you for your attention!

Email: fmertens@mpifr.de